Package: dblr (via r-universe)

September 17, 2024

Type Package

Title Discrete Boosting Logistic Regression

Version 0.1.0

Author Nailong Zhang

Maintainer Nailong Zhang <setseed2016@gmail.com>

Description Trains logistic regression model by discretizing continuous variables via gradient boosting approach. The proposed method tries to achieve a tradeoff between interpretation and prediction accuracy for logistic regression by discretizing the continuous variables. The variable binning is accomplished in a supervised fashion. The model trained by this package is still a single logistic regression model, but not a sequence of logistic regression models. The fitted model object returned from the model training consists of two tables. One table is used to give the boundaries of bins for each continuous variable as well as the corresponding coefficients, and the other one is used for discrete variables. This package can also be used for binning continuous variables for other statistical analysis.

License GPL-3 **Encoding** UTF-8

LazyData true

Imports data.table (>= 1.9.6), xgboost (>= 0.6-4), CatEncoders (>= 0.1.1), Metrics (>= 0.1.1), methods

RoxygenNote 6.0.1 **NeedsCompilation** no

Date/Publication 2017-10-11 17:31:59 UTC

RemoteUrl https://github.com/cran/dblr

RemoteRef HEAD

RemoteSha 5bca86f6b65458ffb1e0b1f2176b6910f79974b6

2 dblr_train

Contents

Index			5
dblr_train		Discrete Boosting Logistic Regression Training	

Description

dblr_train fits a dblr (discrete boosting logistic regression) model.

Usage

```
dblr_train(train_x, train_y, category_cols = NULL, metric = "auc",
   subsample = 1, eta = 0.1, colsample = 1, cv_nfold = 5,
   cv_nrounds = 1000, cv_early_stops = 25, lambda = 1, alpha = 0,
   scale_pos_weight = 1, verbose = FALSE, seed = 123456L)
```

Arguments

train_x	A data.frame of training variables, which can include NA as well		
train_y	A vector of 0 and 1 to represent labels of training samples		
category_cols	A vector of column names to indicate which columns are categorical. Default: NULL means all columns are continuous		
metric	Which metric to use, can be either auc or logloss. Default: auc		
subsample	Subsample ratio from the training samples in each iteration. Default: 1.0		
eta	Controls the rate of learning. eta should be between 0 and 1. Default: 0.1		
colsample	Subsample ratio from all available variables/columns. Default: 1.0		
cv_nfold	Number of folds used for cross-validation. Default: 5		
cv_nrounds	Number of iterations used for cross-validation. Default: 1000		
cv_early_stops	Cross-validation would be stopped if there is no improvement after cv_early_stops iterations. Default: 25		
lambda	Control L2 regularization term. Default: 1.0		
alpha	Control L1 regularization term. Default: 0.0		
scale_pos_weight			
	Useful when training metric is set to auc for imbalanced training data		
verbose	Default: FALSE. If TRUE, the cross-validation process would be showed		
seed	Random seed for the sampling. Default: 123456		

dblr_train 3

Details

As one of the generalized linear models, traditional logistic regression on continuous variables implies that there is a monotonic relation between each predictor and the predicted probability. Bining or discretizing the continuous variables would be helpful when non-monotonic relation exists. In general, it is challenging to find the optimal binning for continuous variables. Too many bins may cause over-fitting and too few bins may not reveal the non-monotinc relation as much as possible. Thus, we propose to use a boosting decision trees to construct a discrete logistic regressions aiming at an automated binning process with good performance. Our algorithm is to construct a sequence of gradient boosting decision trees with at most 1 variable in each tree. Aggregating all decision trees with the same variable would result in the corresponding bins and the coefficients. And by aggregating all trees without variables we would get the intercept.

The model is defined as:

$$Pr(y = 1 | \mathbf{x}_i) = \frac{1}{1 + \exp(-\sum_{j=1}^{m} g(\mathbf{x}_{i,j}) - b)},$$

where $g(\mathbf{x}_{i,j})$ denotes the coefficient of the bin which $\mathbf{x}_{i,j}$ falls into and b denotes the intercept. Both coefficients and intercept are consolidated from boosting trees. More specifically,

$$g(\boldsymbol{x}_{i,j}) = \sum_{k=1}^{K} f_k(\boldsymbol{x}_{i,j}) \cdot I(\text{tree } k \text{ splits on variable } j),$$

$$b = \sum_{k=1}^{K} f_k \cdot I(\text{tree } k \text{ does not split on any variable}),$$

where K is the total number of trees and f_k is the output value for tree k. In this package, we use xgboost package to training the underlying gradient boosting trees.

Value

Returns an object of S3 class dblr, which contains two attributes, i.e., continuous_bins and categorical_bins.

Examples

```
# use iris data for example
dat <- iris
# create two categorical variables
dat$Petal.Width <- as.factor((iris$Petal.Width<=0.2)*1+(iris$Petal.Width>1.0)*2)
dat$Sepal.Length <- (iris$Sepal.Length<=3.0)*2+(iris$Sepal.Length>6.0)*1.25
# create the response variable
dat$Species <- as.numeric(dat$Species=='versicolor')
set.seed(123)
# random sampling
index <- sample(1:150,100,replace = FALSE)
# train the dblr model using the training data
dblr_fit <- dblr_train(train_x=dat[index,c(1:4)],
train_y=dat[index,5],category_cols = c('Petal.Width','Sepal.Length'),
metric = 'logloss',subsample = 0.5,eta = 0.05,colsample = 1.0,</pre>
```

4 predict.dblr

```
lambda = 1.0,cv_early_stops = 10,verbose=FALSE)
# make predictions on testing data
pred_dblr <- predict(dblr_fit,newdata = dat[-index,],type = 'response')
dblr_auc <- Metrics::auc(actual = dat[-index,'Species'],predicted = pred_dblr)
dblr_logloss <- Metrics::logLoss(actual = dat[-index,'Species'],predicted = pred_dblr)
cat('test auc for dblr model:',dblr_auc,'\n')
cat('test logloss for dblr model:',dblr_logloss,'\n')
glm_fit <- glm(data=dat[index,],formula =Species~. ,family = binomial)
pred_glm <- predict(glm_fit,newdata = dat[-index,],type='response')
glm_auc <- Metrics::auc(actual = dat[-index,'Species'],predicted = pred_glm)
glm_logloss <- Metrics::logLoss(actual = dat[-index,'Species'],predicted = pred_glm)
cat('test auc for glm model:',glm_auc,'\n')
cat('test logloss for glm model:',glm_logloss,'\n')</pre>
```

predict.dblr

Discrete Boosting Logistic Regression Prediction

Description

predict.dblr makes predictions on new data set given the fitted dblr model object.

Usage

```
## S3 method for class 'dblr'
predict(object, newdata, type = "response", ...)
```

Arguments

object A fitted dblr model object, which should be returned by calling dblr_train func-

tion

newdata A data.frame contains the samples to predict

type Control the output of prediction. Default: 'response' means probability; 'Link'

would produce the linear part; 'mapped' would produce a data.frame filling with

the coefficients of the model

... further arguments passed to or from other methods

Value

Returns a vector of prediction or a data.frame

Index

dblr_train, 2
predict.dblr, 4