Package: dblr 0.1.0

dblr: Discrete Boosting Logistic Regression

Trains logistic regression model by discretizing continuous variables via gradient boosting approach. The proposed method tries to achieve a tradeoff between interpretation and prediction accuracy for logistic regression by discretizing the continuous variables. The variable binning is accomplished in a supervised fashion. The model trained by this package is still a single logistic regression model, but not a sequence of logistic regression models. The fitted model object returned from the model training consists of two tables. One table is used to give the boundaries of bins for each continuous variable as well as the corresponding coefficients, and the other one is used for discrete variables. This package can also be used for binning continuous variables for other statistical analysis.

Authors:Nailong Zhang

dblr_0.1.0.tar.gz
dblr_0.1.0.zip(r-4.5)dblr_0.1.0.zip(r-4.4)dblr_0.1.0.zip(r-4.3)
dblr_0.1.0.tgz(r-4.4-any)dblr_0.1.0.tgz(r-4.3-any)
dblr_0.1.0.tar.gz(r-4.5-noble)dblr_0.1.0.tar.gz(r-4.4-noble)
dblr_0.1.0.tgz(r-4.4-emscripten)dblr_0.1.0.tgz(r-4.3-emscripten)
dblr.pdf |dblr.html
dblr/json (API)

# Install 'dblr' in R:
install.packages('dblr', repos = c('https://rnorm.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.00 score 1 scripts 205 downloads 1 exports 7 dependencies

Last updated 7 years agofrom:5bca86f6b6. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 16 2024
R-4.5-winOKNov 16 2024
R-4.5-linuxOKNov 16 2024
R-4.4-winOKNov 16 2024
R-4.4-macOKNov 16 2024
R-4.3-winOKNov 16 2024
R-4.3-macOKNov 16 2024

Exports:dblr_train

Dependencies:CatEncodersdata.tablejsonlitelatticeMatrixMetricsxgboost