Package: dblr 0.1.0

dblr: Discrete Boosting Logistic Regression

Trains logistic regression model by discretizing continuous variables via gradient boosting approach. The proposed method tries to achieve a tradeoff between interpretation and prediction accuracy for logistic regression by discretizing the continuous variables. The variable binning is accomplished in a supervised fashion. The model trained by this package is still a single logistic regression model, but not a sequence of logistic regression models. The fitted model object returned from the model training consists of two tables. One table is used to give the boundaries of bins for each continuous variable as well as the corresponding coefficients, and the other one is used for discrete variables. This package can also be used for binning continuous variables for other statistical analysis.

Authors:Nailong Zhang

dblr_0.1.0.tar.gz
dblr_0.1.0.zip(r-4.5)dblr_0.1.0.zip(r-4.4)dblr_0.1.0.zip(r-4.3)
dblr_0.1.0.tgz(r-4.5-any)dblr_0.1.0.tgz(r-4.4-any)dblr_0.1.0.tgz(r-4.3-any)
dblr_0.1.0.tar.gz(r-4.5-noble)dblr_0.1.0.tar.gz(r-4.4-noble)
dblr_0.1.0.tgz(r-4.4-emscripten)dblr_0.1.0.tgz(r-4.3-emscripten)
dblr.pdf |dblr.html
dblr/json (API)

# Install 'dblr' in R:
install.packages('dblr', repos = c('https://rnorm.r-universe.dev', 'https://cloud.r-project.org'))

On CRAN:

Conda:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.00 score 1 scripts 203 downloads 1 exports 7 dependencies

Last updated 7 years agofrom:5bca86f6b6. Checks:9 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 16 2025
R-4.5-winOKMar 16 2025
R-4.5-macOKMar 16 2025
R-4.5-linuxOKMar 16 2025
R-4.4-winOKMar 16 2025
R-4.4-macOKMar 16 2025
R-4.4-linuxOKMar 16 2025
R-4.3-winOKMar 16 2025
R-4.3-macOKMar 16 2025

Exports:dblr_train

Dependencies:CatEncodersdata.tablejsonlitelatticeMatrixMetricsxgboost